Monitoring ER/SR Calcium Release with the Targeted Ca2+ Sensor CatchER+

2017 
Intracellular calcium (Ca2+) transients evoked by extracellular stimuli initiate a multitude of biological processes in living organisms. At the center of intracellular calcium release are the major intracellular calcium storage organelles, the endoplasmic reticulum (ER) and the more specialized sarcoplasmic reticulum (SR) in muscle cells. The dynamic release of calcium from these organelles is mediated by the ryanodine receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R) with refilling occurring through the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. A genetically encoded calcium sensor (GECI) called CatchER was created to monitor the rapid calcium release from the ER/SR. Here, the detailed protocols for the transfection and expression of the improved, ER/SR-targeted GECI CatchER+ in HEK293 and C2C12 cells and its application in monitoring IP3R, RyR, and SERCA pump-mediated calcium transients in HEK293 cells using fluorescence microscopy is outlined. The receptor agonist or inhibitor of choice is dispersed in the chamber solution and the intensity changes are recorded in real time. With this method, a decrease in ER calcium is seen with RyR activation with 4-chloro-m-cresol (4-cmc), the indirect activation of IP3R with adenosine triphosphate (ATP), and inhibition of the SERCA pump with cyclopiazonic acid (CPA). We also discuss protocols for determining the in situ Kd and quantifying basal [Ca2+] in C2C12 cells. In summary, these protocols, used in conjunction with CatchER+, can elicit receptor mediated calcium release from the ER with future application in studying ER/SR calcium related pathologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    7
    Citations
    NaN
    KQI
    []