Ultrafast Structure and Dynamics in Ionic Liquids: 2D-IR Spectroscopy Probes the Molecular Origin of Viscosity

2014 
The viscosity of imidazolium ionic liquids increases dramatically when the strongest hydrogen bonding location is methylated. In this work, ultrafast two-dimensional vibrational spectroscopy of dilute thiocyanate ion ([SCN]−) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1C12im][NTf2]) shows that the structural reorganization occurs on a 26 ± 3 ps time scale and on a 47 ± 15 ps time scale, respectively. The results suggest that the breakup of local ion-cages is the fundamental event that activates molecular diffusion and determines the viscosity of the fluids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    70
    Citations
    NaN
    KQI
    []