A graphene oxide facilitated a highly porous and effective antibacterial regenerated cellulose membrane containing stabilized silver nanoparticles

2014 
Regenerated nanocomposite cellulose membranes embedded with silver nanoparticles (AgNP) and AgNP-graphene oxide (AgGO) were prepared in this study. The as-synthesized AgNP and AgGO were added respectively to a cellulose solution that was prepared by dissolving cellulose in a precooled NaOH/urea (NU) solvent. The solution mixtures were further regenerated into nanocomposite membranes through coagulation in an acidic solution. UV-Vis and TEM results revealed the improved stability of the AgGO compared to that of the AgNP in NU solutions. As revealed by FESEM, the AgGO nanocomposite membrane possessed a more porous structure than a membrane containing AgNP. Antibacterial tests demonstrated that the cellulose membrane of AgGO inhibited the growth of both Staphylococcus aureus and Escherichia coli more effectively than the AgNP nanocomposite membrane, with a lower concentration of AgGO. This work provides a proven and effective method to prepare novel functional cellulose membranes with antibacterial properties, thus broadening the applications of cellulose.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    20
    Citations
    NaN
    KQI
    []