Noise properties of Pb/Cd-free thick film resistors

2010 
Low-frequency noise spectroscopy has been used to examine noise properties of Pb/Cd-free RuO2- and CaRuO3-based thick films screen printed on alumina substrates. Experiments were performed in the temperature range 77–300 K and the frequency range 0.5–5000 Hz with multiterminal devices. The measured noise has been recognized as resistance noise that consists of background 1/f noise and components generated by several thermally activated noise sources (TANSs) of different activation energies. The total noise has been composed of the contributions generated in the resistive layer and in the resistive/conductive layers interface. These noise sources are non-uniformly distributed in the resistor volume. Noise intensity of new-resistive layers has been described by the noise parameter Cbulk. Pb/Cd-free layers turned out to be noisier than their Pb-containing counterparts; however, the removal of Pb and Cd from resistive composition is hardly responsible for the increase in the noise. In the case of RuO2 layers noise increases most likely due to larger grain size of RuO2 powder used to prepare resistive pastes. Information on the quality of the resistive-to-conductive layers interface occurred to be stored in the values of noise parameter Cint. Pb/Cd-free RuO2-based resistive pastes form well-behaved interfaces with various Ag-based conductive pastes. In contrast, CaRuO3-based paste forms bad contacts with AgPd terminations because the density of TANSs increases in the interface area.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    10
    Citations
    NaN
    KQI
    []