The cellular retinoic-acid-binding protein is expressed in tissues associated with retinoic-acid-induced malformations

1990 
Retinoic acid (RA) is thought to play a role in embryonic pattern formation in vertebrates. A naturally occurring gradient of endogenous RA has been demonstrated in the developing chick limb bud, while local application of RA leads to the formation of additional digits. In mammals, a well-defined spectrum of birth defects has been reported as a result of fetal exposure to excess RA. In analogy to the chick limb bud, it may be speculated that these malformations are the result of disturbance of morphogenetic RA concentration gradients. A candidate gene involved in the regulation of endogenous RA concentrations is the gene encoding cellular RA binding protein (CRABP). We have isolated a partial cDNA clone corresponding to the chicken homolog of CRABP, and performed in situ hybridization experiments on sections of embryos at various stages of development. CRABP expression was detected in the CNS, the craniofacial mesenchyme, ganglia of the peripheral nervous system, the limb bud, and the visceral arch area. Our results indicate that the spatiotemporally specified expression pattern displayed by the CRABP gene exhibits a striking correspondence to the tissues that are affected by exposure of avian or mammalian embryos to RA. We hypothesize that CRABP plays an important role in normal embryogenesis and that embryonic tissues showing high CRABP expression are susceptible to the adverse effects of excess RA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    91
    Citations
    NaN
    KQI
    []