Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9

2019 
The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets bearing a protospacer adjacent motif (PAM) and complementarity to an RNA guide. Unlike other Cas9 orthologs, Corynebacterium diphtheriae Cas9 (CdCas9) recognizes the promiscuous NNRHHHY PAM. However, the CdCas9-mediated PAM recognition mechanism remains unknown. Here, we report the crystal structure of CdCas9 in complex with the guide RNA and its target DNA at 2.9 A resolution. The structure reveals that CdCas9 recognizes the NNRHHHY PAM via a combination of van der Waals interactions and base-specific hydrogen bonds. Moreover, we find that CdCas9 exhibits robust DNA cleavage activity with the optimal 22-nucleotide length guide RNAs. Our findings highlight the mechanistic diversity of the PAM recognition by Cas9 orthologs, and provide a basis for the further engineering of the CRISPR-Cas9 genome-editor nucleases. The RNA-guided DNA endonuclease Cas9 from Corynebacterium diphtheriae (CdCas9) recognizes a promiscuous protospacer adjacent motif (PAM). Here the authors provide insights into the CdCas9-mediated PAM recognition mechanism by determining the 2.9 A crystal structure of CdCas9 in complex with the guide RNA and its target DNA, which is of interest for engineering of CRISPR-Cas9 genome-editor nucleases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []