Critical adhesion areas of cells on micro-nanopatterns.

2021 
Cell adhesion to extracellular matrices (ECM) is critical to physiological and pathological processes as well as biomedical and biotechnological applications. It has been known that a cell can adhere on an adhesive microisland only over a critical size. But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration. Herein, we fabricated a series of micro-nanopatterns with different microisland sizes and arginine-glycine-aspartate (RGD) nanospacings on a nonfouling poly(ethylene glycol) background. Besides reproducing that nanospacing of RGD, a ligand of its receptor integrin (a membrane protein), significantly influences specific cell adhesion on bioactive nanoarrays, we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns, yet the latter exhibited more characteristic behaviors of cell adhesion. We found increased critical adhesion areas of human mesenchymal stem cells (hMSCs) on nanoarrayed microislands with increased RGD nanospacings. However, the numbers of nanodots with respect to the critical adhesion areas were not a constant. A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion. We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD, which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis. Electronic supplementary material Supplementary materials and methods (details of fabrication of micro-nanopatterns), and supplementary results (selective adhesion or localization of hMSCs on nanoarrayed microislands with non-fouling background, calculation of critical number of integrin-ligand binding N*, etc.) are available in the online version of this article at 10.1007/s12274-021-3711-6.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    0
    Citations
    NaN
    KQI
    []