Interstellar comet 2I/Borisov as seen by MUSE: C$_2$, NH$_2$ and red CN detections

2020 
We report the clear detection of C$_2$ and of abundant NH$_2$ in the first prominently active interstellar comet, 2I/Borisov. We observed 2I on three nights in November 2019 at optical wavelengths 4800--9300 Awith the Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectrograph on the ESO/Very Large Telescope. These data, together with observations close in time from both 0.6-m TRAPPIST telescopes, provide constraints on the production rates of species of gas in 2I's coma. From the MUSE detection on all epochs of several bands of the optical emission of the C$_2$ Swan system, a rich emission spectrum of NH$_2$ with many highly visible bands, and the red (1-0) bandhead of CN, together with violet CN detections by TRAPPIST, we infer production rates of $Q$(C$_2$) = $1.1\times10^{24}$ mol s$^{-1}$, $Q$(NH$_2$) = $4.8\times10^{24}$ mol s$^{-1}$ and $Q$(CN) = $(1.8\pm0.2)\times 10^{24}$ mol s$^{-1}$. In late November at 2.03~au, 2I had a production ratio of C$_2$/CN$=0.61$, only barely carbon-chain depleted, in contrast to earlier reports measured further from the Sun of strong carbon-chain depletion. Thus, 2I has shown evolution in its C$_2$ production rate: a parent molecule reservoir has started sublimating. At $Q$(NH$_2$)/$Q$(CN) = 2.7, this second interstellar object is enriched in NH$_2$, relative to the known Solar System sample.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    12
    Citations
    NaN
    KQI
    []