An integrated robotic system for transporting surgical tools in hospitals

2016 
The performance of a hospital's sterile processing center (SPC) significantly impacts patient safety and overall productivity. Key to automating this process is to reliably transport instruments throughout the process. In this paper, we detail a robust integrated system for enabling mobile robots to autonomously perform manipulation of assets; specifically, transporting reusable surgical instrument trays in the SPC of a hospital. Our method is based on a cognitive decision making mechanism that plans and coordinates the motions of the robot base and the robot manipulator at specific processing locations. A vision-based manipulator control algorithm was developed for the robot to reliably locate and subsequently pick up surgical tool trays. Further, to compensate for perception and navigation errors, we developed a robust self-aligning end-effector that allows for improved error-tolerance in larger workspaces. We evaluated the developed integrated system using an Adept PowerBot mobile robot equipped with a 6-DOF Schunk PowerCube arm and our customized end-effector in an SPC-like environment. The experiment results validate the effectiveness and robustness of our system for handling surgical instrument trays in tight and constrained environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    4
    Citations
    NaN
    KQI
    []