Fast state tomography with optimal error bounds

2020 
Projected least squares (PLS) is an intuitive and numerically cheap technique for quantum state tomography. The method first computes the least-squares estimator (or a linear inversion estimator) and then projects the initial estimate onto the space of states. The main result of this paper equips this point estimator with a rigorous, non-asymptotic confidence region expressed in terms of the trace distance. The analysis holds for a variety of measurements, including 2-designs and Pauli measurements. The sample complexity of the estimator is comparable to the strongest convergence guarantees available in the literature and---in the case of measuring the uniform POVM---saturates fundamental lower bounds.The results are derived by reinterpreting the least-squares estimator as a sum of random matrices and applying a matrix-valued concentration inequality. The theory is supported by numerical simulations for mutually unbiased bases, Pauli observables, and Pauli basis measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    25
    Citations
    NaN
    KQI
    []