Importance of the number emission factor of combustion-generated aerosols from nano-enabled products

2021 
Abstract Accidental or open waste burning and incineration of nano-enabled products (NEPs) might lead to the release of incidental aerosols in the nano size range into the environment resulting in harmful effects on humans. We have investigated combustion-generated aerosol release during accidental burning for several real-life NEPs such as paints with silica (SiO2) and spruce wood panels containing SiO2 and Fe2O3 nanomaterials (NMs), paper with SiO2 and Fe2O3 NMs and polymeric composites with CuPhthtalocyanine NMs in poly lactic acid (PLA), polyamide 6 (PA6) and thermoplastic pol-urethane (TPU) matrices. Chemical compositions, aerosols number emission factors (nefs) and concentrations of the signature elements of the NMs of the combustion-generated aerosols were investigated. In addition, the residual ash was analyzed. The outcomes of this study shed light on how NM and matrix types influenced the properties of the released aerosols. Based on our results it was established that the combustion-generated aerosols were composed of transformed NMs with modified physical-chemical characteristics compared to the pristine NMs. In addition to aerosols with transformed NMs, there were also particles due to incomplete combustion of the matrix. Types of the pristine NMs and matrices affected the characteristics of the released aerosols. Since the effect of the aerosols is related to the inhaled aerosol number concentration, the nef is an important parameter. Our results showed that the nefs in the size range of 5.6 to 560 nm depended strongly on the type of combusted NEP, which indicated that the NEPs could be categorized according to their potential to release aerosols in this size range when they were burnt. The generated release data facilitate the assessment of human and environmental exposure and the associated risk assessment of combustion-generated aerosols from NEPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []