Spin-driven electrical power generation at room temperature

2019 
On-going research is exploring novel energy concepts ranging from classical to quantum thermodynamics. Ferromagnets carry substantial built-in energy due to ordered electron spins. Here, we propose to generate electrical power at room temperature by utilizing this magnetic energy to harvest thermal fluctuations on paramagnetic centers using spintronics. Our spin engine rectifies current fluctuations across the paramagnetic centers’ spin states by utilizing so-called ‘spinterfaces’ with high spin polarization. Analytical and ab-initio theories suggest that experimental data at room temperature from a single MgO magnetic tunnel junction (MTJ) be linked to this spin engine. Device downscaling, other spintronic solutions to select a transport spin channel, and dual oxide/organic materials tracks to introduce paramagnetic centers into the tunnel barrier, widen opportunities for routine device reproduction. At present MgO MTJ densities in next-generation memories, this spin engine could lead to ‘always-on’ areal power densities that are highly competitive relative to other energy harvesting strategies. Finding novel ways of harvesting energy is of fundamental importance in an energy-hungry world. The authors propose a “spin engine” with the potential experimental ability to generate electrical power at room temperature by harvesting the thermal energy of paramagnetic centers using spintronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    10
    Citations
    NaN
    KQI
    []