Stress Reversals near Hydraulically Fractured Wells Explained with Linear Superposition Method (LSM)
2021
Prior studies have noted that the principal stress orientations near the hydraulic fractures of well systems used for energy extraction may wander over time. Typically, the minimum and maximum principal stresses—in the horizontal map view—swap their respective initial directions, due to (1) fracture treatment interventions, and (2) pressure depletion resulting from production. The present analysis shows with stress trajectory visualizations, using a recently developed linear superposition method (LSM), that at least two generations of stress reversals around hydraulic fractures occur. The first generation occurs during the fracture treatment; the second occurs immediately after the onset of so-called flow-back. During each of these stress swaps in the vicinity of the hydraulic fractures, reservoir directions that were previously in compression subsequently exhibit extension, and directions previously stretching subsequently exhibit shortening. The pressure change in the hydraulic fractures—from over-pressured to under-pressured (only held open by proppant packs)—caused the neutral points that separate domains with different stress states to migrate from locations transverse to the fracture to locations beyond the fracture tips. Understanding such detailed geo-mechanical dynamics, related to the pressure evolution in energy reservoirs, is extremely important for improving both the fracture treatment and the well operation, as future hydrocarbon and geothermal energy extraction projects emerge.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
18
References
2
Citations
NaN
KQI