Prediction, management, and prognosis of mixed chimerism after hematopoietic stem cell transplantation in transfusion-dependent pediatric thalassemia patients.

2020 
BACKGROUND Early-onset mixed chimerism (MC) with a high proportion of residual host cells is considered a signal of graft rejection in patients undergoing allogenic hematopoietic stem cell transplantation for transfusion-dependent thalassemia. In order to prevent graft rejection and minimize the risk of treatment-related graft-versus-host disease (GVHD), we established a hierarchical management system based on chimerism analysis. METHOD This retrospective study provides a comprehensive review of the characteristics, interventions, and outcomes of the 38 patients who developed MC after transplantation among the 144 pediatric thalassemia patients between July 2007 and January 2019 at our center. RESULTS A sibling donor, a blood type-matched donor, conditioning regimens without fludarabine, and transplants containing <10 × 108 total nucleated cells/kg were identified to be associated with the development of MC. Among the 38 patients developing MC, only four patients rejected the grafts. The response rate to donor lymphocyte infusion (DLI, only for patients receiving sibling donor transplantation) and cytokine immunomodulation without DLI was 70.6% and 42.9%, respectively. Patients that developed GVHD after DLI or cytokine therapy had a more significant increase in donor cell chimerism (16%, range 0%-35%) than those without (8.5%, range -21% to 40%, P = .049). However, even when treatment-related GVHD was included, patients with MC had a lower cumulative incidence of total acute GVHD than patients with complete donor chimerism (29.2% vs 48.0%, P = .030). CONCLUSIONS Interventions based on chimerism analysis were effective in preventing graft rejection and did not increase treatment-related GVHD in thalassemia patients with MC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []