Hyperthermic stress resistance of bumblebee males: test case of Belgian species

2020 
Thermotolerance has often been linked to species distribution for a diverse range of organisms. In the context of climate change, assessing heat resistance ability is useful for understanding potential future range shifts and the physiological response of populations. As bumblebee (Bombus) populations have been declining for several decades with several documented range shifts, an assessment of the hyperthermic resistance of species is urgently needed. In this study, we measure in males the heat resistance of ten bumblebee species living in temperate regions (northwestern Europe) with a static temperature methodology to evaluate the time before heat stupor (THS) which corresponds to a chill coma. Our results on heat stress resistance show that not all species are affected in the same way to heat stress. The most widespread species, B. terrestris (median THS 395 min) and B. lucorum (median THS 257 min) are the least sensitive to hyperthermic stress. The resistance time of bumblebee males is up to 10 times longer than the THS for declining species such as B. jonellus (median THS 48 min) and B. magnus (median THS 58 min). We highlight the high interspecific variability of heat resistance in a morphologically homogeneous genus such as bumblebees. From a conservation point of view, our research highlights the urgency for assessing the heat resistance of different species since each one can display a species-specific thermal sensitivity that is likely linked to a risk of decline in the case of heat waves.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    5
    Citations
    NaN
    KQI
    []