Effective biochemical decomposition of chlorinated aromatic hydrocarbons with a biocatalyst immobilized on a natural enzyme support

2013 
Abstract The enzymatic decomposition of 4-chlorophenol metabolites using an immobilized biocatalyst was investigated in this study. Catechol 1,2-dioxygenase for ortho ring cleavage obtained via cloning of the corresponding gene cphA-I from Arthrobacter chlorophenolicus A6 was overexpressed and purified. It was found that the cphA-I enzyme could catalyze the degradation of catechol, 4-chlorocatechol, and 3-methylcatechol. The expressed enzyme was immobilized onto a natural enzyme support, fulvic acid-activated montmorillonite. The immobilization yield was as high as 63%, and the immobilized enzyme maintained high substrate utilization activity, with only a 15–24% reduction in the specific activity. Kinetic analysis demonstrated marginal differences in ν max and K M values for the free and immobilized enzymes, indicating that inactivation of the immobilized enzyme was minimal. The immobilized enzyme exhibited notably increased stability against changes in the surrounding environment (temperature, pH, and ionic strength). Our results provide useful information for the effective enzymatic biochemical treatment of hazardous organic compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    17
    Citations
    NaN
    KQI
    []