Application of the micronucleus test and comet assay in Trachemys callirostris erythrocytes as a model for in situ genotoxic monitoring

2016 
Abstract Trachemys callirostris is a turtle species endemic to northern South America. In northern Colombia it occurs in the middle and lower Magdalena River drainage and its principal tributaries (lower Cauca and San Jorge rivers) and in other minor drainages such as the lower Sinu River. In recent years, industrial, agricultural, and mining activities have altered natural habitats in Colombia where this species occurs, and many of the pollutants released there are known to induce genetic alterations in wildlife species. The micronucleus test and comet assay are two of the most widely used methods to characterize DNA damage induced by physical and chemical agents in wildlife species, but have not been employed previously for genotoxic evaluations in T. callirostris . The goal of this study was to optimize these genotoxic biomarkers for T. callirostris erythrocytes in order to establish levels of DNA damage in this species and thereby evaluate its potential as a sentinel species for monitoring genotoxic effects in freshwater environments in northern Colombia. Both genotoxic techniques were applied on peripheral blood erythrocytes from 20 captive-reared T. callirostris individuals as a negative control, as well as from samples obtained from 49 individuals collected in Magangue (Magdalena River drainage) and 24 individuals collected in Lorica (Sinu River drainage) in northern Colombia. Negative control individuals exhibited a baseline frequency of micronuclei of 0.78±0.58 and baseline values for comet tail length and tail moment of 3.34±0.24 µm and 10.70±5.5, respectively. In contrast, samples from both field sites exhibited significantly greater evidence of genotoxic effects for both tests. The mean MN frequencies in the samples from Magangue and Lorica were 8.04±7.08 and 12.19±12.94, respectively. The mean tail length for samples from Magangue and Lorica were 5.78±3.18 and 15.46±7.39, respectively. Finally, the mean tail moment for samples from Magangue and Lorica were 23.59±18.22 and 297.94±242.18, respectively. The frequency of micronuclei in the samples was positively related to comet tail length and tail moment. Thus, this study showed that both genotoxicity biomarkers may be applied to T. callirostris erythrocytes as a sentinel organism for assessing the effects of environmental pollutants in freshwater ecosystems in northern South America.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    26
    Citations
    NaN
    KQI
    []