Real-world Overall Survival Using Oncology Electronic Health Record Data: Friends of Cancer Research Pilot.

2021 
In prior work, Friends of Cancer Research convened multiple data partners to establish standardized definitions for oncology real-world end points derived from electronic health records (EHRs) and claims data. Here, we assessed the performance of real-world overall survival (rwOS) from data sets sourced from EHRs by evaluating the ability of the end point to reflect expected differences from a previous randomized controlled trial across five data sources, after applying inclusion/exclusion criteria. The KEYNOTE-189 clinical trial protocol of platinum doublet chemotherapy (chemotherapy) vs. programmed cell death protein 1 (PD-1) in combination with platinum doublet chemotherapy (PD-1 combination) in first-line nonsquamous metastatic non-small cell lung cancer guided retrospective cohort selection. The Kaplan-Meier product limit estimator was used to calculate 12-month rwOS with 95% confidence intervals (CIs) in each data source. Cox proportional hazards models estimated hazard ratios (HRs) and associated 95% CIs, controlled for prognostic factors. Once the inclusion/exclusion criteria were applied, the five resulting data sets included 155 to 1,501 patients in the chemotherapy cohort and 36 to 405 patients in the PD-1 combination cohort. Twelve-month rwOS ranged from 45% to 58% in the chemotherapy cohort and 44% to 68% in the PD-1 combination cohort. The adjusted HR for death ranged from 0.80 (95% CI: 0.69, 0.93) to 1.15 (95% CI: 0.71, 1.85), controlling for age, gender, performance status, and smoking status. This study yielded insights regarding data capture, including ability of real-world data to precisely identify patient populations and the impact of criteria on end points. Sensitivity analyses could elucidate data set-specific factors that drive results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []