Complete Wetting of Pt(111) by Nanoscale Liquid Water Films

2016 
The melting and wetting of nanoscale crystalline ice films on Pt(111) that are transiently heated above the melting point in ultrahigh vacuum (UHV) using nanosecond laser pulses are studied with infrared reflection absorption spectroscopy and Kr temperature-programmed desorption. The as-grown crystalline ice films consist of nanoscale ice crystallites embedded in a hydrophobic water monolayer. Upon heating, these crystallites melt to form nanoscale droplets of liquid water. Rapid cooling after each pulse quenches the films, allowing them to be interrogated with UHV surface science techniques. With each successive heat pulse, these liquid drops spread across the surface until it is entirely covered with a multilayer water film. These results, which show that nanoscale water films completely wet Pt(111), are in contrast to molecular dynamics simulations predicting partial wetting of water drops on a hydrophobic water monolayer. The results provide valuable insights into the wetting characteristics of nanosc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    11
    Citations
    NaN
    KQI
    []