Controlled Wetting Properties through Heterogeneous Surfaces Containing Two-level Nanofeatures

2017 
Addressing the direct control of surface wettability has been a significant challenge for a variety of applications from self-cleaning surfaces to phase-change applications. Surface wettability has been traditionally modulated by installing surface nanostructures or changing their chemistry. Among numerous nanofabrication efforts, the chemical oxidation method is considered a promising approach because it allows cost-effective, quick, and direct control of the morphologies and chemical compositions of the grown nanofeatures. Despite the wide applicability of the surface oxidation method, the precise control of wetting behaviors through the growth of nanostructures has yet to be addressed. Here, we investigate the wetting characteristics of heterogeneous surfaces that contain two-level features (i.e., nanograsses and nanoflowers) with different petal shapes and structural chemistry. The difference in growth rates between nanograsses and nanoflowers creates a time-evolving morphology that can be classified ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    5
    Citations
    NaN
    KQI
    []