Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites

2021 
Abstract Nanocomposites comprising flexible polymers and high dielectric constant inorganic nanoparticles are considered to be one of the promising candidates for electrostatic capacitor dielectrics. However, the effect of interfacial property on electrical energy storage of dielectric polymer nanocomposites is still not clear. Herein, the role of the polarity of the interfacial region is investigated. For this purpose, three polymers with different polarity, polymethyl methacrylate (PMMA), polyglycidyl methacrylate, and polymethylsulfonyl ethyl methacrylate (PMSEMA) are attached onto BaTiO3 (BT) nanoparticle surface via surface-initiated reversible addition-fragmentation chain transfer polymerization. It is found that the polarity of shell polymers shows an apparent effect on the dielectric and energy storage of dielectric polymer nanocomposites. For example, PMSEMA@BT (shell polymer possesses the highest polarity) increases dielectric loss and decreases the breakdown strength of the nanocomposites, leading to lower energy storage capability. However, PMMA@BT (shell polymer possesses the lowest polarity) can induce higher breakdown strength of the nanocomposites. As a result, the PMMA@BT nanocomposite exhibits the highest electrical energy storage capability among the three nanocomposites. This research provides new insight into the design of core-shell nanofillers for dielectric energy storage applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []