A tower structured scintillator-lead photon calorimeter using a novel fiber optics readout system

1985 
Abstract Described is the construction and the performance of a tower-structured scintillator-lead photon calorimeter using a novel fiber optics readout system. The calorimeter is divided into 9 individual towers. Each tower has a cross section of 5 × 5 cm 2 and consists of 60 layers of 2 mm lead plus 5 mm thick scintillator. The four sides of each tower are covered by thin acrylic sheets (1.5 mm thick) doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these sheets, then converted a second time in a set of polystyrene optical fibers (diameter 2 mm) which run longitudinally through the calorimeter along the corners of each tower. A small diameter photomultiplier was attached to the fibers at the back end of the calorimeter. The obtained energy resolution with incident electrons in the range of 0.25−5.0 GeV c is σ E = 0.10 √E . The uniformity of response across the front face of each tower was measured.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    28
    Citations
    NaN
    KQI
    []