Tailoring Fast Directional Mass Transport of Nano-Confined Ag–Cu Alloys upon Heating: Effect of the AlN Barrier Thickness

2019 
This study addresses the phase stability and atomic mobility of Ag–Cu40at.% nano-alloys confined by AlN in a nanomultilayered configuration during thermal treatment. To this end, nanomultilayers (NMLs) with a fixed Ag–Cu40at.% nanolayer thickness of 8 nm and a AlN barrier nanolayer with variable thickness of 4, 8, or 10 nm were deposited by magnetron sputtering on sapphire substrates and subsequently isothermally annealed for 5 or 20 min in air in the range of 200–500 °C. The microstructure of the as-deposited and heat-treated NMLs was analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. Annealing of the thicker AlN barrier layers at T > 300 °C leads to the formation of an interconnected network of line-shaped Cu(O) protrusions on the annealed NML surface. The well-defined outflow pattern of Cu(O) originates from the thermally induced surface cracking of the top AlN barriers with subsequent fast mass transport of Cu along the Cu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    5
    Citations
    NaN
    KQI
    []