Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats

2008 
During the surgical preparation of bone, prior to insertion of an implant, bone will be traumatized which leads to local resorption. Consequently, early implant fixation might be reduced. Impaired early fixation, as evidenced by radiostereometry, has been associated with increased risk of late loosening. Bisphosphonates are known to inhibit bone resorption by osteoclasts and have shown to increase implant fixation when administered systemically or locally directly at the bone prior to implant insertion. A method to bind bisphosphonates directly to the implant was developed. Stainless steel screws were coated with crosslinked fibrinogen, serving as an anchor for bisphosphonate attachment. The screws were inserted in the tibial metaphysis in rats and implant fixation was analyzed with pullout measurements. Bisphosphonate coated screws turned out to have 28 % higher pullout force at 2 weeks compared to control screws with the fibrinogen coating only. The next experiment was designed to measure at what stage in the healing process the strongest bisphosphonate effect was gained. Bisphosphonate coated screws were expected to reduce the resorption of the traumatized bone. However, no decreased fixation was found in the control group. Instead, the fixation increased with time, and so did the effect of the bisphosphonates. At 8 weeks, the pullout force was twice as high for screws with bisphosphonate compared to control screws. By histology at 8 weeks, a bone envelope was found around bisphosphonate coated screws but absent around control screws. Thus, the anti catabolic action of the bisphosphonate resulted in an increased amount of bone surrounding the bisphosphonate screws. Titanium is generally considered to be better fixated in bone compared to stainless steel. The coating technique was found to be applicable on titanium as well, again with improved fixation. A majority of fractures occur in osteoporotic bone. Despite the relatively low amount of bisphosphonates at the screws, the bisphosphonate coating improved implant fixation at 2 weeks also in rats made osteoporotic by ovariectomy. In conclusion, bisphosphonates bound to titanium or stainless steel screws coated with fibrinogen increased fixation in bone, in rats. These results suggest that the bisphosphonate and fibrinogen coating might improve the fixation of screw shaped implants and possibly also arthroplasties, in humans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    91
    Citations
    NaN
    KQI
    []