Scour Protection Effects of a Geotextile Mattress with Floating Plate on a Pipeline

2020 
Underwater pipelines are vital to the oil industry. Extending the service life of these pipelines is a key issue in improving the sustainability of oil transportation. A geotextile mattress with floating plate (GMFP) is a novel and sustainable countermeasure for scour and erosion control and is herein introduced to protect a partially buried pipeline from local scour in steady currents. A series of experiments was designed to verify the protection capabilities of the GMFP and investigate its parametric effects on protection. The average seepage hydraulic gradient under the pipeline was adopted to depict the protection effects of the GMFP, and was calculated with the pore pressure readings under the pipeline. The test results show that the GMFP is capable of protecting a pipeline from the onset of local scour in a unidirectional current. The average seepage hydraulic gradient below the pipeline decreases remarkably after a GMFP is installed. The average hydraulic gradient shows a descending trend with increased sloping angle α when 0.64 0.82. The hydraulic gradient ascends when the bottom opening ratio δ increases from 0.167 to 0.231, due to the decreased intensity of the bottom vortex. The hydraulic gradient drops with a rising plate height, except for a fluctuation at Hp = 0.12 m. An approximate negative correlation is found between the obstruction height of the floating plate and the average hydraulic gradient under the pipeline. This could be partially attributed to the extension and amplification of the bottom vortex on the leeside of the pipeline due to the increased plate obstruction height.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []