Reaction of the Antitumor Antibiotic CC-1065 with DNA. Location of the Site of Thermally Induced Strand Breakage and Analysis of DNA Sequence Specificity

1985 
: CC-1065 is a unique antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of this drug are thought to be due to its ability to form a covalent adduct with DNA through N3 of adenine. Thermal treatment of CC-1065-DNA adducts leads to DNA strand breakage. We have shown that the CC-1065 structural modification of DNA that leads to DNA strand breakage is related to the primary alkylation site on DNA. The thermally induced DNA strand breakage occurs between the deoxyribose at the adenine covalent binding site and the phosphate on the 3' side. No residual modification of DNA is detected on the opposite strand around the CC-1065 lesion. Using the early promoter element of SV40 DNA as a target, we have examined the DNA sequence specificity of CC-1065. A consensus sequence analysis of CC-1065 binding sites on DNA reveals two distinct classes of sequences for which CC-1065 is highly specific, i.e., 5'PuNTTA and 5'AAAAA. The orientation of the DNA sequence specificity relative to the covalent binding site provides a basis for predicting the polarity of drug binding in the minor groove. Stereo drawings of the CC-1065-DNA adduct are proposed that are predictive of features of the CC-1065-DNA adduct elucidated in this investigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    189
    Citations
    NaN
    KQI
    []