Studies on the Catalytic Mechanism of a Glutamic Peptidase

2010 
Scytalidoglutamic peptidase (SGP) is the prototype of fungal glutamic peptidases that are characteristically pepstatin insensitive. These enzymes have a unique catalytic dyad comprised of Gln53 and Glu136 that activate a bound water molecule for nucleophilic attack on the carbonyl carbon atom of the scissile peptide bond. The hydrolysis by SGP at peptide bonds with proline in the P1′ position is a rare event among peptidases that we investigated using the series of fluorescence resonance energy transfer peptides, Abz-KLXPSKQ-EDDnp, compared with the series Abz-KLXSSKQ-EDDnp. The preference observed in these two series for Phe and His over Leu, Ile, Val, Arg, and Lys, seems to be related to the structure of the S1 subsite of SGP. These results and the pH profiles of SGP activity showed that its S1 subsite can accommodate the benzyl group of Phe at pH 4 as well as the positively charged imidazolium group of His. In the pH range 2 to 7, SGP maintains its structure and activity, but at pH 8 or higher it is irreversibly denatured. The intrinsic fluorescence of the Trp residues of SGP were sensitive to the titration of carboxyl groups having low pK values; this can be attributed to the buried Asp57 and/or Asp43 as described in SGP three-dimensional structure. The solvent kinetic isotope effects and the proton inventory experiments support a mechanism for the glutamic peptidase SGP that involves the nucleophilic attack of the general base (Glu136) activated water, and establish a fundamental role of the S1 subsite interactions in promoting catalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    23
    Citations
    NaN
    KQI
    []