Biohydrogen Production from Furniture Waste via Catalytic Gasification in Air over Ni-loaded Ultra-stable Y-type Zeolite

2021 
Abstract This is the first study on air gasification of furniture waste (FW) over Ni-loaded ultra-stable Y-type zeolites (Ni-USY) to produce biohydrogen. Effects of SiO2/Al2O3 ratio of USY (5, 30, and 60), Ni loading (5, 10, 20, and 30 wt.%) onto the support, and reaction temperature (700, 750, and 800 °C) on catalytic air gasification were investigated. The Ni-USY(5) led to a relatively higher gas yield (72.19 wt.%) and higher volume percent of H2 (31.94 vol.%) and CO (34.57 vol.%) and lower CH4 and C2-C4 yields than the Ni-USY(30) and Ni-USY(60). An increase in the Ni loading onto USY(5) support from 5 wt.% to 30 wt.% did not affect the yield of gas. The concentrations of H2 (41.16 vol.%) and CO (38.62 vol.%) increased as increasing Ni loading from 5 wt.% to 20 wt.%. The H2 and CO concentrations significantly decreased as the Ni loading became over 20 wt.%. Increasing the temperature from 700 to 800 °C increased the yields of H2 and CO and decreased the yields of CO2, CH4, and C2-C4. The contents of harmful compounds (e.g., benzene derivatives, phenolics, and polycyclic aromatic hydrocarbons) in liquid product were suppressed when using the Ni-USY(5). The air gasification with the Ni-USY catalysts could offer as an emerging technology to transform FW to H2-rich syngas with low contents of harmful pollutants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    0
    Citations
    NaN
    KQI
    []