Hybrid E. coli—Mitochondrial ribonuclease P RNAs are catalytically active

2006 
RNase P is a ribonucleoprotein that cleaves tRNA precursors at their 5′-end. Mitochondrion-encoded RNA subunits of mitochondrial RNase P (mtP-RNA) have been identified in jakobid flagellates such as Reclinomonas americana, in the prasinophyte alga Nephroselmis olivacea, and in several ascomycete and zygomycete fungi. While the structures of ascomycete mtP-RNAs are highly reduced, those of jakobids, prasinophytes, and zygomycetes retain most conserved features of their bacterial counterparts. Therefore, these mtP-RNAs might be active in vitro in the absence of a protein subunit, as are bacterial P-RNAs. Here we present a comparative structural analysis including seven newly characterized jakobid mtP-RNAs. We investigate ribozyme activities of mtP-RNAs and find that even the most bacteria-like molecules of jakobids are inactive in vitro. However, when certain domains of jakobid and N. olivacea mtP-RNAs are replaced with those from Escherichia coli, these hybrid RNAs show catalytic activity. In vitro mutagenesis of these hybrid mtP-RNAs shows that various structural elements play a critical role in ribozyme catalysis and provide further support for the presence of these elements in mtP-RNAs. These include GNRA tetraloops in helix P14 and P18 of Jakoba libera, and a remnant P3 pairing in Seculamonas ecuadoriensis. Finally, we will discuss reasons for the failure of mtP-RNAs to show catalytic activity in the absence of P-proteins based on our mutagenesis analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    20
    Citations
    NaN
    KQI
    []