The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter

2006 
Abstract The nucleotide binding domains (NBDs) are the energy supplying subunits of ATP-binding cassette (ABC) proteins. They power transport by binding and hydrolyzing ATP. Tracing the pathway between different conformational states of the NBDs during ATP binding, hydrolysis, and release has, however, proven difficult. We have used molecular dynamics simulations to study the ATP-driven association of the NBDs of the maltose ABC transporter, MalK, based on the crystal structures of its open and semiopen dimers. When MgATP was introduced into the binding pockets, the semiopen dimer transitioned to a closed conformation, whereas the open dimer evolved to a semiopen state. In the absence of docked MgATP, however, the twin NBDs of both the open and semiopen starting configurations drifted further apart. Both the presence of MgATP and direct cross-interface protein-protein hydrogen bonds, primarily involving the D-loop, quite likely play a key role in initiating closure. The simulations of the MgATP-docked semiopen form indicate that completion of closure is driven mainly by cross-interface contacts between the γ-phosphate of ATP and residues in the signature motif. Our simulations also give insight into possible interactions of MalK with the regulatory proteins MalT and enzyme IIAglc
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    58
    Citations
    NaN
    KQI
    []