Gymnasts' ability to modulate bioelectric sensorimotor rhythms during kinesthetic motor imagery of sports non-specific movements

2021 
Previous psychological studies using questionnaires have consistently reported that athletes have superior motor imagery ability, both for sports-specific and sports non-specific movements. However, regarding motor imagery of sports non-specific movements, no physiological studies have demonstrated differences in neural activity between athletes and non-athletes. The purpose of the present study was to examine differences in bioelectric sensorimotor rhythms during kinesthetic motor imagery (KMI) of sports non-specific movements between gymnasts and non-gymnasts. We selected gymnasts as an example population for investigating this issue because they are likely to have particularly superior motor imagery ability due to their frequent usage of motor imagery including KMI as part of daily practice. Healthy young participants (16 gymnasts and 16 non-gymnasts) performed repeated motor execution and KMI of sports non-specific movements (wrist dorsiflexion and shoulder abduction of the dominant hand). Scalp electroencephalogram (EEG) was recorded over the contralateral sensorimotor cortex. During motor execution and KMI, sensorimotor EEG power is known to decrease in the α- (8-15 Hz) and β-bands (16-35 Hz), referred to as event-related desynchronization (ERD). We calculated the maximal peak of ERD both in the α- (αERDmax) and β-bands (βERDmax) as a measure of changes in corticospinal excitability. αERDmax was significantly greater in gymnasts, who subjectively evaluated their KMI as being more vivid, for both KMI tasks. On the other hand, βERDmax was greater in gymnasts only for shoulder abduction KMI. These findings suggest gymnasts9 signature of flexibly modulating sensorimotor rhythm with no movements, which may be the basis of their superior ability of KMI for sports non-specific movements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []