Catalytic Alkane Transfer Dehydrogenation by PSP-Pincer-Ligated Ruthenium. Deactivation of an Extremely Reactive Fragment by Formation of Allyl Hydride Complexes

2019 
Iridium complexes bearing PCP-type pincer ligands are the most effective catalysts reported to date for the low-temperature (≤ca. 200 °C) dehydrogenation of alkanes. To investigate the activity of formally isoelectronic ruthenium complexes, we have synthesized the neutral 2,7-di-tert-butyl-4,5-bis(diisopropylphosphino)-9,9-dimethylthioxanthene (iPrxanPSP) pincer ligand and several Ru complexes thereof. The (iPrxanPSP)Ru complexes catalyze alkane transfer dehydrogenation of the benchmark cyclooctane/t-butylethylene (COA/TBE) couple with turnover frequencies up to ca. 1 s–1 at 150 °C and 0.2 s–1 at 120 °C, the highest rates for alkane dehydrogenation ever reported at such temperatures. Dehydrogenation of n-octane, however, is much less effective. A combination of experiment and DFT calculations allow us to explain why (iPrxanPSP)Ru is more effective than (iPrPCP)Ir for dehydrogenation of COA, while the reverse is true for dehydrogenation of n-alkanes. Considering only in-cycle species and simple olefin comp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    12
    Citations
    NaN
    KQI
    []