Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer

2014 
Tumors form when mistakes in the genes of a single cell allow it to multiply uncontrollably. Sometimes further mutations in genes allow the cancerous cells to escape from the tumor, enter the bloodstream and start a second cancer elsewhere in the body. However, many of the genetic changes behind this process, which is called metastasis, are poorly understood—especially those changes in genes that occur rarely, but can still help the cancer to spread. Vanharanta, Marney et al. have looked at data on which genes are switched ‘on’ or ‘off’ in metastatic breast cancer cells. A gene called RBM47 was often switched off in these cells, and patients with a low level of RBM47 tended to have a poor clinical outcome. To test the function of the gene, Vanharanta, Marney et al. switched on RBM47 in cancer cells that had spread from the breast to either the lungs or the brain, and then injected these cells into mice. Few of these cells were able to invade lung and brain tissues in the mice. However, switching off the RBM47 gene in breast cancer cells had the opposite effect; these cells invaded the lungs of mice more efficiently. RBM47 encodes a protein that sticks to molecules of messenger RNA: molecules that transport the instructions encoded in DNA to the machinery that builds proteins. Vanharanta, Marney et al. found that the wild-type RBM47 protein increased the levels of 102 different messenger RNA molecules, but decreased the levels of another 92. Further experiments showed that RBM47 also slows the rate at which messenger RNA molecules are broken down inside cells: this results in the accumulation of proteins that slow down the growth of tumors. Without RBM47, tumor growth is unleashed. Further work is needed to test if increasing RBM47 activity could be used as a new treatment for some types of cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    84
    Citations
    NaN
    KQI
    []