Organoid Models of Colorectal Pathology: Do They Hold the Key to Personalized Medicine? A Systematic Review.

2020 
BACKGROUND Colorectal cancer and inflammatory bowel disease account for a large portion of the practice of colorectal surgery. Historical research models have provided insights into the underlying causes of these diseases but come with many limitations. OBJECTIVE The aim of this study was to systematically review the literature regarding the advantage of organoid models in modeling benign and malignant colorectal pathology DATA SOURCES:: Sources included PubMed, Ovid-Medline, and Ovid Embase STUDY SELECTION:: Two reviewers completed a systematic review of the literature between January 2006 and January of 2020 for studies related to colon and intestinal organoids. Reviews, commentaries, protocols, and studies not performed in humans or mice were excluded. RESULTS A total of 73 articles were included. Organoid models of colorectal disease have been rising in popularity to further elucidate the genetic, transcriptomic and treatment response of these diseases at the individual level. Increasingly complex models utilizing co-culture techniques are being rapidly developed that allow in-vitro recapitulation of the disease microenvironment. LIMITATIONS This review is only qualitative and the lack of well utilized nomenclature in the organoid community may have resulted in exclusion of articles. CONCLUSIONS Historical disease models including cell lines, patient derived tumor xenografts, and animal models have created a strong foundation for our understanding of colorectal pathology. Recent advances in 3-dimensional cell cultures, in the form of patient-derived epithelial organoids and induced human intestinal organoids have opened a new avenue for high-resolution analysis of pathology at the level of an individual patient. Recent research has shown the potential of organoids as a tool for personalized medicine with their ability to retain patient characteristics including treatment response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    2
    Citations
    NaN
    KQI
    []