Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging.

2014 
Glycerol is among the most commonly used optical clearing agents for tissues clearance largely due to refractive index (RI) matching between glycerol and the submerged tissues. Here we applied glycerol as structure modifier at both macroscopic (as porogen) and nanoscopic (as nanostructure ameliorant) scales to fabricate transparent porous scaffolds made from poly(ethylene glycol) (PEG) as well as other widely used biomaterials (e.g., PLGA, PA, or gelatin), whose nanostructures, in the scale of light wavelength, dominantly improved the optical transmittance of the scaffolds even when immersed in RI mismatched medium (e.g., culture medium or water). We further exploited the clearing mechanisms based on Mie scattering theory, illustrating that conformational changes of polymer chains induced by solvent effects of glycerol enhanced the anisotropy (i.e., directional alignment) of the nanostructures, leading to reduced crystallinity and scattering of the resulted PEG scaffolds. Our findings represent the first ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    12
    Citations
    NaN
    KQI
    []