Design considerations to reduce gap variation and misalignment effects for inductive power transfer system

2014 
An inductive power transfer (IPT) system usually consists of four parts: an AC-DC power factor correction (PFC) converter, a high frequency DC-AC inverter, a compensation network comprising a loosely coupled transformer (LCT) and the resonant capacitors, and a rectification output circuit. Due to the relative large air gap, the magnetic coupling coefficient of the IPT system is poor, different from the closely-coupled IPT systems. As a result, the efficiency of the IPT system is always a main concern for different applications. To ensure high power transfer efficiency, these IPT systems should have high tolerance for different gap variation and horizontal misalignment conditions. In this paper, some design considerations to reduce gap and misalignment effects for the IPT system is proposed. By using finite element analysis (FEA) simulation method, the performance of different transmitter and receiver coil dimensions are compared. In order to validate the performance of the proposed design considerations, a hardware prototype is built and the corresponding experiments are carried out. The experimental results shows that the LCT prototype could maintain coupling coefficient between 0.237∼0.212 within 40 mm horizontal misalignment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []