Recurrent Neural Network-based Acute Concussion Classifier using Raw Resting State EEG Data

2020 
Concussion is a global health concern. Despite its high prevalence, a sound understanding of the mechanisms underlying this type of diffuse brain injury remains elusive. It is, however, well established that concussions cause significant functional deficits; that children and youths are disproportionately affected and have longer recovery time than adults; and recovering individuals are more prone to suffer additional concussions, with each successive injury increasing the risk of long term neurological and mental health complications. Currently, concussion management faces two significant challenges: there are no objective, clinically accepted, brain-based approaches for determining (i) whether an athlete has suffered a concussion, and (ii) when the athlete has recovered. Diagnosis is based on clinical testing and self-reporting of symptoms and their severity. Self-reporting is highly subjective and symptoms only indirectly reflect the underlying brain injury. Here, we introduce a deep learning Long Short Term Memory (LSTM)-based recurrent neural network that is able to distinguish between healthy and acute post-concussed adolescent athletes using only a short (i.e. 90 seconds long) sample of resting state EEG data as input. The athletes were neither required to perform a specific task nor subjected to a stimulus during data collection, and the acquired EEG data were neither filtered, cleaned of artefacts, nor subjected to explicit feature extraction. The LSTM network was trained and tested on data from 27 male, adolescent athletes with sports related concussion, bench marked against 35 healthy, adolescent athletes. During rigorous testing, the classifier consistently identified concussions with an accuracy of >90% and its ensemble-median Area Under the Curve (AUC) corresponds to 0.971. This is the first instance of a high-performing classifier that relies only on easy-to-acquire resting state EEG data. It represents a first step towards the development of an easy-to-use, brain-based, automatic classification of concussion at an individual level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    0
    Citations
    NaN
    KQI
    []