Biocompatibility of marine magnetotactic ovoid strain MO-1 for in vivo application

2021 
Magnetotactic bacteria are capable of biosynthesizing magnetic nanoparticles, also called magnetosomes, and swimming along magnetic field lines. The abilities endow the whole cells of magnetotactic bacteria with such applications as targeted therapy and manipulation of microrobots. We have shown that the intact marine magnetotactic bacteria MO-1 kill efficiently antibiotic-resistant pathogen Staphylococcus aureus in vivo, but the biocompatibility of this marine bacterium is unknown. In this study, the strain MO-1 was chosen to analyze its biocompatibility and potential for biomedicine applications. Results showed that MO-1 cells could be guided at 37 °C under an external magnetic field and swim in the blood plasma and urine. They could keep active locomotivity within 40 min in the plasma and urine, although their velocity slowed down. When incubated with human cells, magnetotactic bacteria MO-1 had no obvious effects on cellular viability at low dose, while the cell toxicity increased with the augmentation of the quantity of the MO-1 cells added. In the in-vivo experiments, the median lethal dose of magnetotactic bacteria MO-1 in rats was determined to be 7.9×1010 bacteria/kg. These results provided the foundation for the biocompatibility and safety evaluations of magnetotactic bacteria MO-1 and suggested that they could be basically used in clinical targeted therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []