Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells

2011 
In this paper we investigate the performance and stability of small-molecule organic solar cells with respect to the indium tin oxide (ITO)/organic interface. Different zinc-phthalocyanine (ZnPc)/fullerene (C60) cell architectures with and without ITO O2-plasma treatment are compared and tested with respect to their degradation behavior under illumination in inert atmosphere. Photoelectron spectroscopy (UPS and XPS) shows that the O2-plasma treatment increases the ITO work function from 4.3 eV up to 5.6 eV. We find that both the increased ITO work function as well as the introduction of an electron blocking layer between ITO and the mixed donor/acceptor layer increases the open-circuit voltage Voc by more than 200 mV. For both cases our continuum approach device simulation quantitatively relates the increase of Voc to a reduced contact recombination and thus a reduced dark current. For cells built on ozone treated ITO we find a fast cell degradation caused by the UV part of the AM 1.5 spectrum. We identify the degradation, which manifests itself in a decrease of Voc of up to 25%, as a partial reversion of the plasma induced ITO work function increase. Additionally, we demonstrate that the degradation can be reduced by structural changes in the cell architecture, leading to improved cell stability. We present a comprehensive study of the recombination at the ITO/organic interface and its influence on the open-circuit voltage and the cell stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    62
    Citations
    NaN
    KQI
    []