Improvement of field matching in segmented-field electron conformal therapy using a variable-SCD applicator

2007 
The purpose of the present study is to demonstrate that the use of an electron applicator with energy-dependent source-to-collimator distances (SCDs) will significantly improve the dose homogeneity for abutted electron fields in segmented-field electron conformal therapy (ECT). Multiple Coulomb scattering theory was used to calculate and study the P80–20 penumbra width of off-axis dose profiles as a function of air gap and depth. Collimating insert locations with air gaps (collimator-to-isocenter distance) of 5.0, 7.5, 11.5, 17.5 and 19.5 cm were selected to provide equal P80–20 at a depth of 1.5 cm in water for energies of 6, 9, 12, 16 and 20 MeV, respectively, for a Varian 2100EX radiation therapy accelerator. A 15 × 15 cm2 applicator was modified accordingly, and collimating inserts used in the variable-SCD applicator for segmented-field ECT were constructed with diverging edges using a computer-controlled hot-wire cutter, which resulted in 0.27 mm accuracy in the abutted edges. The resulting electron beams were commissioned for the pencil-beam algorithm (PBA) on the Pinnacle3 treatment planning system. Four hypothetical planning target volumes (PTVs) and one patient were planned for segmented-field ECT using the new variable-SCD applicator, and the resulting dose distributions were compared with those calculated for the identical plans using the conventional 95 cm SCD applicator. Also, a method for quality assurance of segmented-field ECT dose plans using the variable-SCD applicator was evaluated by irradiating a polystyrene phantom using the treatment plans for the hypothetical PTVs. Treatment plans for all four of the hypothetical PTVs using the variable-SCD applicator showed significantly improved dose homogeneity in the abutment regions of the segmented-field ECT plans. This resulted in the dose spread (maximum dose–minimum dose), σ, and D90–10 in the PTV being reduced by an average of 32%, 29% and 32%, respectively. Reductions were most significant for abutted fields of nonadjacent energies. Planning segmented-field ECT using the variable-SCD applicator for a patient with recurrent squamous cell carcinoma of the left ear showed the dose spread, σ, and D90–10 of the dose distribution in the PTV being reduced by an average of 38%, 22% and 22%, respectively. The measured and calculated dose in a polystyrene phantom resulting from the variable-SCD, segmented-field ECT plans for the hypothetical PTVs showed good agreement; however, isolated differences between dose calculation and measurement indicated the need for a more accurate dose algorithm than the PBA for segmented-field ECT. These results confirmed our hypothesis that using the variable-SCD applicator for segmented-field ECT results in the PTV dose distribution becoming more homogenous and being within the range of 85–105% of the 'given dose'. Clinical implementation of this method requires variable-SCD applicators, and the design used in the present work should be acceptable, as should our methods for construction of the inserts. Dose verification measurements in a polystyrene phantom and the recommended improvements in dose calculation should be appropriate for quality assurance of segmented-field ECT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []