Composition rules of Ni-base single crystal superalloys and its influence on creep properties via a cluster formula approach.

2020 
The present work investigated the composition evolution of the TMS series of Ni-base single crystal (SC) superalloys in light of the cluster formula approach systematically. The cluster formula of SC superalloys could be expressed with [Formula: see text], in which all the alloying elements were classified into three groups, Al series ([Formula: see text]), Cr series ([Formula: see text]), and Ni series ([Formula: see text]). It was found that the total atom number (Z) of the cluster formula units for TMS series of superalloys varies from Z ~ 17 to Z ~ 15.5, and then to Z ~ 16 with the alloy development from the 1st to the 6th generation, in which the superalloys with prominent creep resistance possess an ideal cluster formula of [Formula: see text] with Z = 16. Similar tendency of composition evolution also appears in the PWA and CMSX series of SC superalloys. Typical TMS series of superalloys with prominent creep properties generally exhibit a moderate lattice misfit of γ/γ' which could render alloys with appropriate particle size of cuboidal γ' precipitates to acquire a maximum strength increment by precipitation strengthening mechanism. More importantly, the relationship between the lattice misfit (δ) of γ/γ' and the creep rupture lifetime (tr) of superalloys was then established, showing a linear correlation in the form of lgtr-lg|δ|3/2 at both conditions of 900 °C/392 MPa and 1100 °C/137 MPa. Combined with the lattice misfit, the cluster formula approach would provide a new way to modify or optimize the compositions of Ni-base superalloys for further improvement of creep property.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    3
    Citations
    NaN
    KQI
    []