Development of a radiobiological evaluation tool to assess the expected clinical impacts of contouring accuracy between manual and semi-automated segmentation algorithms

2017 
RADEval is a tool developed to assess the expected clinical impact of contouring accuracy when comparing manual contouring and semi-automated segmentation. The RADEval tool, designed to process large scale datasets, imported a total of 2,760 segmentation datasets, along with a Simultaneous Truth and Performance Level Estimation (STAPLE) to act as ground truth tumor segmentations. Virtual dose-maps were created within RADEval and two different tumor control probability (TCP) values using a Logistic and a Poisson TCP models were calculated in RADEval using each STAPLE and each dose-map. RADEval also virtually generated a ring of normal tissue. To evaluate clinical impact, two different uncomplicated TCP (UTCP) values were calculated in RADEval by using two TCP-NTCP correlation parameters (δ = 0 and 1). NTCP values showed that semi-automatic segmentation resulted in lower NTCP with an average 1.5 – 1.6 % regardless of STAPLE design. This was true even though each normal tissue was created from each STAPLE (p < 0.00001). TCP and UTCP presented no statistically significant differences (p ≥ 0.1884). The intra-operator standard deviations (SDs) for TCP, NTCP and UTCP were significantly lower for the semi-automatic segmentation method regardless of STAPLE design (p < 0.0331). Both intra-and inter-operator SDs of TCP, NTCP and UTCP were significantly lower for semi-automatic segmentation for the STAPLE 1 design (p <0.0331). RADEval was able to efficiently process 4,920 datasets of two STAPLE designs and successfully assess the expected clinical impact of contouring accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []