Relationship between bubble characteristics and hydrodynamic parameters for single bubbles in presence of surface active agents

2019 
Abstract Rising single air bubbles were investigated in aqueous solutions of hexadecylamine (HDA) and methyl isobutyl carbinol (MIBC) as surface active agents at varying concentrations at a constant gas flow rate. Shadowgraphy was applied to determine main bubble characteristics, such as equivalent diameter, morphology, and rising velocity. From these characteristics, critical parameters like the concentration at the minimum bubble velocity were derived. Simultaneous application of Particle Image Velocimetry (PIV) provided information about hydrodynamic parameters, e.g. the induced liquid velocities and vortex shedding. From surface tension measurements, the concentration of adsorbed species on the interface and packing densities of HDA and MIBC on the bubble surface could be calculated. HDA exhibited a better adsorption and a higher packing density on the bubble surface compared to MIBC due to the ionic character and the straight hydrocarbon chain. The bubble characteristics were therefore more strongly affected by HDA than by MIBC. Combining the Shadowgraphy and PIV results it was found that the mean liquid velocity as well as the amount of induced turbulent kinetic energy increased with increasing concentration of surfactants in the solutions, while the investigated bubble characteristics such as equivalent diameter and rising velocity decreased. The increase in mean liquid velocity and induced turbulent kinetic energy could be correlated with the oscillating frequency of the bubble trajectory, which also increased with increasing surfactant concentration. The vortex shedding process could be visualised using Proper Orthogonal Decomposition (POD) revealing the micro-process of energy cascading.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    98
    References
    5
    Citations
    NaN
    KQI
    []