Proof-of-principle demonstration of measurement-device-independent quantum key distribution based on intrinsically stable polarization-modulated units

2020 
The experimental demonstration of measurement-device-independent quantum key distribution (MDI-QKD) has been widely demonstrated. Thus far, several experimental groups have implemented polarization encoding MDI-QKD but with manual polarization controllers, or polarization modulators that make circular polarization states unstable. Here, we apply an intrinsically stable polarization-modulated unit (PMU) to MDI-QKD so that Alice and Bob can modulate four BB84 polarization states, all of which can be kept stable from even the harsh environment. Moreover, our PMU can provide two operational polarization encoding modes suitable to different application scenarios. A proof-of-principle demonstration of MDI-QKD based on our PMU is implemented with an interference visibility of 46.6%, an average quantum bit error rate of 1.49% for the Z basis and the secure key rate of 4.25 × 10−6 bits per pulse. The proposed study is helpful for building polarization encoding MDI-QKD systems with better stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []