Computer Intelligent Systems for Manufacture and Control

2019 
Automation of production and assembly processes is one of the important tasks in micromechanics. To produce totally automated micro factory or automate the solar concentrator production and assembly, it is necessary to develop a computer vision system that can replace an operator. A computer vision system may have several functions, for example, recognition of objects on the image of working area, recognition of mutual position of several components on the image, and measurement of component size, etc. We select several tasks that are connected with the micromechanics area and automatization—for example, size measurement of micro components. The object of measurement is a micro piston. Micro pistons are the components of heat engines that transfer the heat energy from solar concentrator to electrical energy. The goal of this work is the research and development of the LIRA (Limited Receptive Area) neural network and its application to measure the micro piston size. To obtain micro piston sizes, it is necessary to recognize its boundaries in the image. We propose to use LIRA neural network to extract and classify piston boundaries. In this chapter, we describe and analyze the preliminary results of LIRA application to micro piston boundaries recognition. Experiments with the recognition system have given us the information to improve the structure and parameters of the developed neural network. Experiments with the LIRA neural network showed the necessity to accelerate its processing time by implementing the neural network algorithms with electronic schemes such as Altera. The advantage of the neural network is its parallel structure and possibility of the training. FPGA allows the implementation of these parallel algorithms in a single device. This chapter contains brief description of ensemble neuron networks and some results of storage capacity estimation. We propose to apply this ensemble neural network to the problem of selection of adequate maneuver for robot-manipulator or for mobile robot.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    0
    Citations
    NaN
    KQI
    []