MHD simulations of accretion onto a dipolar magnetosphere - I. Accretion curtains and the disk-locking paradigm

2009 
Aims. We investigate the accretion process from an accretion disk onto a magnetized rotating star with a purely dipolar magnetic field. Our main aim is to study the mechanisms that regulate the stellar angular momentum. In this work, we consider two effects that can contrast with the spin-up torque normally associated with accretion: (1) the spin-down torque exerted by an extended magnetosphere connected to the disk beyond the corotation radius; (2) the spin-down torque determined by a stellar wind flowing along the opened magnetospheric field lines. Methods. Our study is based on time-dependent axisymmetric magnetohydrodynamic numerical simulations of the interaction between a viscous and resistive accretion disk with the dipolar magnetosphere of a rotating star. We present the first example of a numerical experiment able to model at the same time the formation of accretion curtains, the effects of an extended stellar magnetosphere and the launching of a stellar wind. Results. In the examples presented, the spin-down torque related to the star-disk interaction can extract only ∼10% of the accretion torque, due to the weakness of the extended connection. Not even the spin-down torque exerted by a stellar wind is strong enough (∼20%): despite a huge lever arm (RA ≈ 19 R� ), the mass-loss rate ( u Mwind ≈ 1% u Macc) is too low to provide an efficient torque.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    103
    Citations
    NaN
    KQI
    []