Hematologic and Biochemical Biologic Variation in Laboratory Cats.

2016 
: The biologic variation associated with a clinical pathology result is important to consider before reference intervals (RI) are used. Most available RI are population-based RI, in which the analytical variability, interindividual variability, and intraindividual variability are confounded. In addition, when the intraindividual variability is considerably less than the interindividual variability, a population-based RI is insufficiently sensitive to detect changes in a subject over time. Here we determined the biologic variation and reference change value (RCV) of hematologic and biochemical variables in laboratory cats. Blood specimens from 14 (7 females and 7 males) overnight-fasted laboratory cats sampled 7 times (days 1, 2, 7, 14, 31, 42, and 100) were analyzed regarding hematology and biochemistry variables. For each variable, analytical, intraindividual, and interindividual coefficients of variation were estimated prior to calculation of the index of individuality and the RCV. RBC variables (count, Hgb, Hct, MCV, MCH, MCHC, and RBC distribution width) and 5 biochemical analytes (cholesterol, creatinine, triglycerides, ALP, and calcium) exhibited marked individuality, therefore indicating that subject-based reference intervals or RCV would be preferable when monitoring these variables in laboratory cats. Population-based RI were shown to be adequate for glucose and sodium, and both types of population and individual RI were similarly efficient for albumin, total protein, urea, ALT, AST, creatine kinase, chloride, carbon dioxide, iron, magnesium, inorganic phosphate, and potassium and reticulocyte, WBC, neutrophil, lymphocyte, monocyte, eosinophil, and platelet counts. The RCV determined in the present study provide a valuable tool for monitoring hematologic and biochemical variables in healthy laboratory cats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []