Molecular and electrophysiological features of spinocerebellar ataxia type seven in induced pluripotent stem cells

2020 
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the ATXN7 gene. Patients with this disease suffer from a degeneration of their cerebellar Purkinje neurons and retinal photoreceptors that result in a progressive ataxia and loss of vision. As with many neurodegenerative diseases, studies of pathogenesis have been hindered by a lack of disease-relevant models. To this end, we have generated induced pluripotent stem cells (iPSCs) from a cohort of SCA7 patients in South Africa. First, we differentiated the SCA7 affected iPSCs into neurons which showed evidence of a transcriptional phenotype affecting components of STAGA (ATXN7 and KAT2A) and the heat shock protein pathway (DNAJA1 and HSP70). We then performed electrophysiology on the SCA7 iPSC-derived neurons and found that these cells show features of functional immaturity. Lastly, we were able to differentiate the SCA7 iPSC cells into retinal photoreceptors that also showed similar transcriptional aberrations to the SCA7 neurons. Our findings demonstrate that iPSC-derived neurons and photoreceptors from SCA7 patients express molecular and electrophysiological differences that are indicative of impaired neuronal health. We hope that these findings will contribute towards the ongoing efforts to establish the cell-derived models of neurodegenerative diseases that are needed to develop patient-specific treatments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    0
    Citations
    NaN
    KQI
    []