Cell shape identification using digital holographic microscopy.

2015 
We present a cost-effective, simple, and fast digital holographic microscopy method based upon Rayleigh–Sommerfeld backpropagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semitransparent spherical beads and living red blood cells. Our results show that, by only using the real part of the back-reconstructed amplitude, the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    22
    Citations
    NaN
    KQI
    []