ICME Based Additive Manufacturing of Alloy 230 Components

2018 
Metal additive manufacturing (AM) is an innovative and enabling manufacturing technology that is also pervasive/cross cutting in terms of system applications, dual-use potential and interest from multiple agencies. AM technologies build near-net/net shape components, one layer at a time, using digital data from 3D CAD models. In addition, AM has the potential to enable novel product designs that could not be fabricated using conventional subtractive processes. The goal of this Metals Affordability Initiative (MAI) project (HON-9 Agreement Order Number FA8650-14-2-5204) is to create a cross-functional team focused on developing the necessary Integrated Computational Materials Engineering (ICME) based framework, knowledge and supporting models to enable powder bed AM production of nickel-based superalloy aerospace and space components. An Activity Integrated Project Team (AIPT) comprising of Honeywell Aerospace (Lead), Aerojet Rocketdyne, ATI Powder Metals, Carpenter Powder Products, Lockheed Martin, Northrop Grumman, Rolls-Royce Corporation, Arconic Inc. along with Applied Optimization and QuesTek as major subcontractors was formed. The AIPT successfully completed the concept feasibility demonstration for additively manufactured Alloy 230 components. A focused series of design of experiments (DOE) related to machine parameters and post processing operations were designed and implemented within Concept Laser Cusing M2 machine. The collected empirical data was used to optimize process parameters, calibrate ICME models, and improve tool maturity level (TML) of the ICME framework for AM of Ni superalloy components. A preliminary business case was developed for parts from Honeywell Aerospace, Aerojet Rocketdyne, Rolls-Royce Corporation, Northrup Grumman and Lockheed Martin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    2
    Citations
    NaN
    KQI
    []